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Purpose. This study was conducted to evaluate the applicability of SPLINDID, a semiparametric, model-

based approach for obtaining transcription rates from the pharmacodynamics of mRNA expression.

Methods. A nonparametric exponential cubic spline function was used to obtain the transcription rate

profile and the dynamics of mRNA expression was fitted using compartmental approaches. The

transcription rate profile and mRNA degradation parameter was estimated using maximum likelihood

method of ADAPT II software.

Results. Data sets containing noise for mRNA levels were simulated for four diverse pharmaceutically

relevant conditions: receptor nonlinearity, a model in which the variant mRNAs differing in mRNA

degradation constants were transcribed and for a minimal model of the cell cycle. SPLINDID was able

to fit the data sets and accurately recapitulate the transcription rate profiles normalized to the mRNA

degradation rate constants. The model was also challenged using experimental data containing time

profiles of cell-cycle-regulated genes.

Conclusions. The SPLINDID approach is flexible in capturing complicated/complex mRNA profiles that

are encountered in many experimental data sets.

KEY WORDS: exponential splines; microarray; pharmacodynamics; pharmacokinetics;
pharmacogenomic modeling.

INTRODUCTION

Techniques such as microarrays and real-time quantita-
tive polymerase chain reaction now allow simultaneous
measurements of the levels of many RNA transcript species
and are being extensively used in biomedical research.
Although these techniques provide a data-rich snapshot of
cellular RNA species levels, further mechanistic delineation
of the underlying gene regulatory processes requires consid-
erable further analysis in which modeling techniques adapted
from pharmacokinetics and pharmacodynamics (PK/PD) can
potentially play an important role.

In a previous paper, we reported on SPLINDID, a
semiparametric, model-based approach capable of extracting
several experimentally difficult to access gene regulation
parameters such as transcription rate profile, translation,
and protein degradation rate constants from data sets in
which mRNA and cognate protein time courses are
available (1). The overall strategy and its implementation
are referred to as SPLINDID because the nonparametric
component of the modeling process uses flexible, relatively
Bnonparametric^ functions based on splines to describe the
transcription profiles in combination with the deterministic

HargroveYSchmidt model for describing gene dynamics
(1Y3). However, because proteomics time profiles are fre-
quently not obtained or available in many cases, the primary
focus of this report is to determine whether the SPLINDID
approach could be adapted to obtain transcription rate
profiles given mRNA dynamics alone. Such an extension of
SPLINDID would also allow it to be used for genes (e.g.,
transfer RNA) whose end products are RNA transcripts that
are not translated to protein.

METHODS

Pharmacodynamic Model for mRNA

The dynamics of messenger RNA were parsimoniously
defined by the differential equation in Eq. (1) (1,3):

dM

dt
¼ R tð Þ � kMM ¼ kM

R tð Þ
kM
�M

� �
ð1Þ

where M is the mRNA concentration, kM is the first-order
degradation of mRNA, R(t) is the rate of mRNA transcrip-
tion per unit volume, and dM

dt is the rate of change of mRNA
concentration.

The ratio R(t)/kM is referred to as the normalized
transcription rate profile. It is important to note that the
normalized transcription rate has the same units as M and is
not, therefore, nondimensional. The normalized transcription
rate profile has an intuitive interpretation: it represents the
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hypothetical time profile of mRNA levels that would be
obtained if each instantaneous value of R(t) were to be
maintained for a sufficient period of time to approximate
steady state in the system.

The SPLINDID modeling process (described below)
accurately provides the dynamics of R(t)/kM. However, the
individual components of the normalized transcription rate
profile, R(t) and kM, cannot be accurately obtained from
modeling with mRNA time profiles as inputs because of
covariation. The mathematical causes of this covariation can
be seen on closer inspection of Eq. (1): a multitude of R(t)
and kM value combinations can yield any given value of dM

dt

because increases (or decreases) in R(t) can be offset by
corresponding increases (decreases) in the value of kM.

Nonparametric Cubic Spline Approximation

The nonparametric component of the modeling process
uses flexible, relatively Bnonparametric^ functions based on
splines to describe the transcription profiles in differential
equation, Eq. (1). In SPLINDID, the transcription rate
profile, R(t) is modeled as an exponential function of splines:

R tð Þ ¼ eSpline tð Þ � 1 ð2Þ

Cubic splines were used for modeling the Spline(t) term in
the exponential of Eq. (2). A cubic spline is a piecewise
polynomial of order 4 (degree 3) that can be represented by
(4,5):

Spline tð Þ ¼
Xi¼4

i¼1

CijSi tð Þ ¼
Xi¼4

i¼1

Cij

t � xj

� �i�1

i� 1ð Þ! for xj � t � xjþ1

ð3Þ

where Cij are coefficients and Si(t) are piecewise polynomials
of order 4 that are defined to be nonzero only between n
breakpoints xj that are strictly increasing.

The functional form of Eq. (2) was selected after several
numerical experiments indicated its usefulness in the model-
ing process. Because cubic splines are flexible functions, they
can contain undesirable inflections, some of which can take
on physically inadmissible negative values; the exponential
term in Eq. (2) constrains the values to positive and also
dampens the undesirable inflections and oscillations by
imposing a steeply increasing penalty during the fitting
procedures. However, because the exponential term
approaches zero only when the Spline(t) function in the
exponent approaches negative infinity, it is numerically
infeasible to provide zero-valued initial conditions that could
be needed. The term containing j1 included in Eq. (2)
allows an initial condition of R(0) = 0 to be imposed
whenever appropriate for modeling.

The implementation of the cubic spline was accom-
plished by setting the order of spline in a B-spline basis
function formulation to 4. The DBSINT, DBSOPK, and
DBSVAL subroutines from the Fortran programming lan-
guage version of the International Mathematical Statistical
Library (IMSL, Visual Numerics Inc., San Ramon, CA,
USA) for the Unix platform were used for spline calcula-
tions. The positions of the knots of B splines were optimized
with the DBSOPK subroutine; the spline coefficients were

computed using the DBSINT subroutine. Outputs from the
DBSINT subroutine were provided as input to DBSVAL for
interpolation.

Implementation of Modeling Strategy

We explicitly integrated Eq. (1) using the integration
factor method, which results in the following equation for M.

M ¼M0e�kMt þ e�kMt

Z t

0

ekMtR tð Þdt ð4Þ

where M0 is the constant of integration and represents the
initial value of M.

The integrated expression for M (Eq. 4) was incorpo-
rated into the right-hand side of Eq. (1). The system
consisting of the integral term in Eq. (4) and the resultant
forms of Eq. (1) was integrated within the ADAPT pharma-
cokinetics/pharmacodynamics systems analysis software (6)
in the first stage of the heuristic estimation procedure.

The input data consisted of values of the mRNA time
profile, M(t), and the model output represented estimates for
the normalized transcription rate profile, i.e., the ratio R(t)/
kM. The value of M0 was set to zero in the simulations and
during fitting.

Several nested modeling runs that varied the number
of estimated ordinates for interpolation by the spline
function were conducted; the time points corresponding to
the estimated ordinates were equally spaced over the
interval of the data. Model selection was user-driven and
based on a combination of graphical visualization by the
user and the Akaike Information Criterion (7). The models
identified by visual inspection and Akaike Information
Criteria were generally the same or only differed incremen-
tally in complexity.

From the selected model, parameter estimates for the
ordinates for interpolating the spline [which describes the
transcription rate profile R(t)] and the parameter kM were
obtained from ADAPT. The estimated values of R(t) and kM

were then used to compute the R(t)/kM ratio.
The parameter estimation procedures employed the

maximum likelihood method in the ADAPT software
package for the UNIX platform (6). The variance model
employed assumed that the residual error standard deviation,
s i, was related to the true value of each output Yi, as
approximated by its fitted value bYiYi , via the relationship:
�2

i ¼ SD2
Intercept;i þ SDSlope;i

bYiYi

� �2
: The SDSlope is a measure of

precision, whereas SDIntercept is a measure of sensitivity.

Generation of Simulated Data Sets from Signaling Models

The ground truth in gene expression experiments is
rarely known with certainty and we therefore employed
simulated data to assess the performance of the method.
Parameter values used for the simulation and results from
simulations without noise were used as reference or Btrue^
values to which the performance of the proposed method was
compared.

The overall model used for three of the four simulation
experiments, shown in Fig. 1A, consisted of modules to
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describe drug pharmacokinetics, transcriptional signaling,
and mRNA dynamics. The drug dose was a bolus input
capable of producing an initial drug concentration of 100
concentration units; drug pharmacokinetics was described by
one-compartmental model with a first-order elimination rate
constant, kel, of 0.5 hj1. The mRNA dynamics are described
by Eq. (1); unless otherwise noted, the mRNA degradation
rate constant, kM, was set to 1.2 hj1.

As shown in Fig. 1B, the transcriptional signaling
module consisted of receptor interactions coupled to a
stochastic model for signal transduction (8). The drug
interacted with its receptor reversibly with a second-order
on rate, k1, of 0.5 (concentration units h)j1 and a first-order
off rate, kj1, of 20 hj1. The initial receptor concentration was
set at 10 concentration units; all remaining initial conditions
were set at zero. The drugYreceptor interactions were
described by the following equation for free receptor:

dR

dt
¼ �k1C tð ÞRþ k�1 �DR ð5Þ

where C(t), R, and DR are drug, free receptor, and drug-
bound receptor, respectively. The stochastic model or tanks-
in-series model (Fig. 1B) (8) was used to represent
transcriptional signal transduction; three identical tanks
each with time constant, t, of 0.75 h were employed.

Noisy data with CV (defined as the ratio of standard
deviation to mean) of 0.2 were obtained in triplicate at time
points 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5, 15, 16.5, and 18 h.

Receptor Nonlinearity. For the receptor nonlinearity

experiments, the overall model in Fig. 1A and B was used; in

the simulations four dose levels were employed, capable of

producing input drug concentrations of 10, 100, 1,000, and

10,000 concentration units. The stochastic model was used as

the signaling module and other parameters were as previ-

ously described.

Differing mRNA Degradation Rate Constants. The

model used for simulating the transcription of three alterna-

tively spliced mRNAs (mRNA1, mRNA2, and mRNA3) is

shown in Fig. 1C. The model incorporates a common

Fig. 1. A schematic of the overall model consisting of the drug pharmacokinetics,

transcriptional signaling and mRNA modules is shown in panel (A). (B) Stochastic

model-based transcriptional signaling module used in (C). Panel (B) was combined

with (A) to generate simulated data for the effect of receptor nonlinearity. (C) The

model used to assess the effect of variable mRNA degradation rate constant on the

performance of SPLINDID; the three alternatively spliced mRNAs shown (mRNA1,

mRNA2, mRNA3) comprised fractions f1, f2, and f3, respectively, of the total

transcription and differed in mRNA degradation constants (kM1, kM2, kM3). (D)

Minimal cell cycle model involving a substrate A, with zero-order infusion input that

activates a cascade consisting of a kinase and a protease. The protease degrades the

substrate. Dashed lines represent information flows and the symbols are described

in the text.
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transcription rate R(t) process for all splice variants with a

fraction f1 being processed to mRNA1, a fraction f2 being

processed to mRNA2, and the remaining fraction f3 = (1 j f1

j f2) yielding variant mRNA-3. The value f = f1 = f2 = f3 = 1/

3 was used; the mRNAs were assumed to decay indepen-

dently with degradation rate constants of kM1 = 1.2 hj1, kM2

= 0.6 hj1, and kM3 = 0.3 hj1, respectively. The stochastic

model was used as the signaling module and the other

parameters were as previously described.

Minimal Model for the Cell Cycle. The zero-order

ultrasensitivity model of Goldbeter (9), which exhibits sharp

oscillatory behavior, was used as a prototypical example of a

model containing a feedback loop. The model is shown

schematically in Fig. 1D and was represented by the

following system of differential equations:

dA

dt
¼ RA � kAA� V1AY

K1 þA
ð6aÞ

dX

dt
¼ V2

A

K2 þA

1�X

K3 þ 1�Xð Þ

� �
� V3

X

K4 þX
ð6bÞ

dY

dt
¼ V4X

1� Y

K5 þ 1� Yð Þ

� �
� V5

Y

K6 þ Y
ð6cÞ

dM

dt
¼ R tð Þ � kMM where R tð Þ ¼ �X ð6dÞ

The drug pharmacokinetic compartment and the stochastic
signaling modules were not used for this model. The propor-

tionality constant between the level of X and mRNA
production, a, was set to 10. In Eq. (6aYd), Ki (i = 1Y6) and
Vi (i = 1Y5) indicate MichaelisYMenten-type disocciation
constants and maximal velocities, respectively; X and Y are

the fractions of kinase and protease in their respective activated
forms. Parameter values for the model were based on those used
by Goldbeter (9), which match the experimentally observed

period and waveform in in vitro models of the mitotic cell
cycle. Initial values were A = 0.01 mM and X = Y = 0.01.

RESULTS

Evaluation of the SPLINDID Semiparametric Approach

Performance with Receptor Nonlinearity

The pharmacodynamics of many drugs is frequently
nonlinear because of receptor saturation. To determine
whether the SPLINDID approach was capable of handling
receptor nonlinearities, we evaluated its ability to fit noisy
mRNA data generated by simulations with nonlinear recep-
tor kinetics. Simulated data were obtained using the model in
Fig. 1A and B with four drug doses that resulted in initial
concentrations of either 10, 100, 1,000, or 10,000 concentra-
tion units. Nonlinearities were apparent on visual inspection
at the two highest concentrations. The performance of the
SPLINDID approach was assessed by its ability to fit the
simulated mRNA data and the accuracy of its predictions of
the normalized transcription rate. Results from noise-free
simulations were used as the Btrue values^ to assess the
predictions of the SPLINDID method.

Figure 2A shows the fit of the SPLINDID approach to
the mRNA data for doses corresponding to the initial drug
concentrations of 10, 100, and 10,000 concentration units.
The SPLINDID fit, represented by solid lines, satisfactorily
fits the mRNA data and provides a good approximation of
the true values (shown in dashed lines). The normalized
transcription profiles obtained using SPLINDID also provid-
ed satisfactory approximation of the corresponding true
values obtained from noise-free simulations (Fig. 2B). The
normalized transcription profile corresponding to the initial
concentration of 10 concentration units was time-shifted
compared to the reference curves; the exact reasons for the
modest shift are unclear but are being investigated.

Performance with a Model with Differing mRNA
Degradation Rate Constants

The normalized transcriptional rate profile, R(t)/kM,
contains individual contributions from its R(t) and kM terms,
and the primary goal of this numerical experiment was to dem-

Fig. 2. Performance of SPLINDID for the receptor nonlinearity

model. Simulated mRNA data points used as inputs are shown in

filled circles in (A) for each of the three initial drug concentrations

indicated. The solid line summarizes the fit of the SPLINDID

approach to the simulated mRNA (A) and normalized transcription

profile data (B); the dashed lines are the corresponding profiles in the

absence of added noise.
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onstrate that the SPLINDID approach was capable of detect-
ing alterations in the normalized transcriptional rate profile
caused by kM changes upon controlling for R(t). We used the
model in Fig. 1C that produces three variant mRNAs:
mRNA1, mRNA2, and mRNA3 comprising fractions f1, f2,
and f3 = 1 j f1 j f2 of the total transcription, respectively. By
setting identical values of f = f1 = f2 = f3 = 1/3 and with
differing kM values, the model allows us to test this specific
aspect of SPLINDID performance. This model can be con<
sidered a minimal representation of alternative splicing (10)
and can be extended to more splice variants by assigning ad<
ditional parameters analogous to f for all but one of the variants.

Results from SPLINDID in Fig. 3A and B show the fits
to mRNA input data used and the predicted normalized
transcription profiles, respectively, relative to the true values
from noise-free simulations. The results demonstrate that the
SPLINDID approach is capable of satisfactorily approximat-
ing the true normalized transcription rate profiles when the
mRNA degradation rate constant is changed.

Performance with the Minimal Model for the Cell Cycle

Many chemotherapeutic agents act selectively on specific
stages of the cell cycle. In the next stage of the analysis, the
SPLINDID approach was challenged with the minimal model
for the cell cycle (Fig. 1D), which contains additional
structural and pharmacodynamic complexities (9). This model
exhibits an unusual nonlinearity that has been termed zero-
order ultrasensitivity; it contains a feedback loop and exhibits
oscillatory behavior of the limit cycle type (9). Despite these
added complexities, the SPLINDID approach fits the mRNA
data satisfactorily (Fig. 4A), and also provides accurate
estimates of the normalized transcription rate (Fig. 4B).
There were modest deviations at sharp corner-like points
between peaks in the normalized transcription profile, but the
overall approach of SPLINDID to the data was satisfactory.

Performance with an Experimental Gene Expression
Data Set

Several groups have used gene expression profiling to
investigate the cell cycle, a fundamental biological process

Fig. 3. Performance of SPLINDID with the alternative splicing

model. The simulated mRNA data points used as inputs are shown

in filled circles for kM = 1.2 hj1, in open circles for kM = 0.6 hj1, and

in open squares for kM = 0.3 hj1 in (A). The solid line summarizes the

fit of the SPLINDID approach to the simulated mRNA (A) and nor-

malized transcription profile data (B); the dashed lines are the cor-

responding profiles in the absence of added noise. mRNA degradation

rate constant values, kM , are also indicated in each figure.

Fig. 4. Performance of SPLINDID with the minimal model for the

cell cycle. Simulated mRNA data points used as inputs are shown in

filled circles in (A). The solid line summarizes the fit of the

SPLINDID approach to the simulated mRNA (A) and normalized

transcription profile data (B); the dashed lines are the corresponding

profiles in the absence of added noise.
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that is often the target of anticancer and immunosuppressive
drugs (11,12). We assessed the performance of SPLINDID
using publicly available data (available at http://cellcycle-
www.stanford.edu) from the cell cycle gene expression
profiling experiments of Spellman et al. (12). The down-
loaded data, which were in log-normalized form, were
linearized prior to modeling with SPLINDID. Figure 5 shows
the mRNA profiles (Fig. 5A, C) and normalized transcription
rate profiles (Fig. 5B, D) for two representative, cell-cycle-
dependent mRNAs, CDC5 and SLT2; both mRNAs code for
serine/threonine kinases and belong to the mitogen-activated
protein (MAP) kinase family. The fit of the SPLINDID
model to mRNA data was satisfactory, as assessed from the
approach of the fitted line to the data and by the relative
absence of bias.

DISCUSSION

In this report, we demonstrated that SPLINDID, a novel
semiparametric, model-based approach, previously used for
genomicYproteomic time series (1), is effective for extracting
normalized transcription rate profiles from gene expression
profiles containing mRNA dynamics alone. We challenged
the underlying SPLINDID approach extensively to deter-

mine whether it was capable of providing accurate normal-
ized transcription profiles when nonlinear signaling occurred.
In each challenge, the SPLINDID approach performed
satisfactorily.

The SPLINDID approach provides the normalized
transcription rate profile, which is difficultVif not sometimes
virtually impossibleVto obtain by experiment. The experi-
mental method of choice for obtaining the transcription rate
is the nuclear run-on assay, which is challenging because it
requires subcellular fractionation and ex vivo reconstitution
with cofactors that often cause loss of viability (13). Likewise,
measurement of mRNA half-life requires transcription
blockers, such as actinomycin D, that have broad specificity
and alter a multitude of other cellular processes in addition
to the RNA of interest (14,15).

Our approach was motivated by WagnerYNelson decon-
volution (16) and by the nonparametric, spline-based model-
ing techniques proposed for input deconvolution for oral
dosage forms in pharmacokinetics (17,18). However, these
deconvolution techniques have not been systematically
investigated for pharmacogenomic modeling. From the
experimental standpoint, data collection for the pharmaco-
genomic problem presents some specific challenges that are
not encountered in human and animal pharmacokinetics

Fig. 5. Performance of SPLINDID with experimental results from the cell cycle gene expression profiling expression data set

of Spellman et al. (12). Experimental data for mRNAs of two representative genes, CDC5 and SLT2, that were used as

inputs are shown in filled circles in (A) and (C), respectively. The solid line summarizes the fit of the SPLINDID approach to

the simulated mRNA (A and C) and normalized transcription profile data (B and D).
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studies. For example, the unit impulse response, which is
easily obtained by intravenous bolus dosing in pharmacoki-
netics, is difficult for the pharmacogenomic problem. Fur-
thermore, the polyexponential-type constraints that are
commonly used in pharmacokinetics are more difficult to
justify in pharmacogenomics because of the nonlinearities in
and the relative paucity of quantitative information on
biological signaling cascades.

The SPLINDID approach has certain advantages as well
as limitations relative to the compartmental models frequent-
ly used in pharmacokinetics/pharmacodynamic modeling.
Compartmental modeling requires individualized models to
be identified for each gene time profile, and because it is
resource- and time-intensive, it can be difficult to use for
modeling large numbers of genomic profiles. SPLINDID, on
the other hand, is semiparametric and does not require gene-
specific models. However, a possible disadvantage of
SPLINDID is that it only provides the normalized transcrip-
tion rate profile, R(t)/kM, which is a composite variable
containing contributions from both the mRNA input and
output processes. In systems with first-order mRNA degra-
dation, the normalized transcription rate provides complete
information on the shape of the transcription rate profile, but
the presence of the mRNA degradation rate constant (kM)
scaling factor precludes determination of the absolute tran-
scription rate profile in the absence of additional experimen-
tal data.

In conclusion, our results demonstrate the capabilities
and versatility of SPLINDID, and indicate that it is capable
of fitting mRNA profiles obtained in a variety of pharma-
ceutically important contexts.
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